Matrix vector products
![image](https://user-images.githubusercontent.com/78291267/157035496-e7654b71-977a-4240-9894-79dc315639c6.png)
What we want to do now in this video is relate our notion of a matrix to everything we already know about vectors.
Let's define what is means when we take the product of our matrix A with some vector x. Our definition will only work if the vector x has the same number of components as A has columns.
![image](https://user-images.githubusercontent.com/78291267/157036078-169bdabb-446d-4261-9583-177eec9345d7.png)
![image](https://user-images.githubusercontent.com/78291267/157040389-2328e4a9-249c-4a6a-a807-a8fb95e5f9f4.png)
This matrix A also can be represented like this.
![image](https://user-images.githubusercontent.com/78291267/157040484-f9897f5a-cb93-4cfa-a9ed-f116627d6f42.png)
Now the interesting here is now the product Ax can be interpreted as a linear combination.
Introduction to the null space of matrix
Before null space, let's review about the definition of subspace.
![image](https://user-images.githubusercontent.com/78291267/157437673-b632e97d-f3c2-4b2e-9e85-06272ceee544.png)
Conditions
- Zero vector is a member of the subspace
- Close under addition
- Close under multiplication
![image](https://user-images.githubusercontent.com/78291267/157438578-5d32c35a-1bf2-4d34-a517-f47f7f6a3373.png)
Is N a subspace?
- Does this contain zero vector? Yes
![image](https://user-images.githubusercontent.com/78291267/157439402-5bc45843-451a-4262-ab6f-39d45fd4b036.png)
- Close under addition? Yes
![image](https://user-images.githubusercontent.com/78291267/157439552-54e4a4e2-5ce7-423b-b952-e4e0bea8827e.png)
We know that $A\vec {v_1} and A\vec {v_2}$ are zero vectors. If you add them all, you can get zero vector!
- Close under multiplication? Yes
![image](https://user-images.githubusercontent.com/78291267/157440179-b5a20c73-88c9-436d-8943-626295b260ce.png)
When you have to find a null space of a matrix, your goal is to find the set of all x's th
Null space 2: Calculating the null space of a matrix
![image](https://user-images.githubusercontent.com/78291267/157441004-bb3ce0d3-d0e0-4199-a07d-865beeb7537a.png)
)
![image](https://user-images.githubusercontent.com/78291267/157441060-e2c6c472-9430-45bc-bb8b-bf899c944b23.png)
We can make a RREF matrix and find the solution.
![image](https://user-images.githubusercontent.com/78291267/157441272-9efebeea-0121-4cdb-98da-df53497230a2.png)
![image](https://user-images.githubusercontent.com/78291267/157441358-62760a44-3ceb-47ef-9124-dab0e65be216.png)
So the solution set is a linear combination of those two vectors.
The null space of A equals all the linear combinations of these vectors. It's span of two vectors!
![image](https://user-images.githubusercontent.com/78291267/157441644-94f02dda-66af-4130-9a74-95daabbe345c.png)
So, the RREF of A times our vector x is equal to zero.
![image](https://user-images.githubusercontent.com/78291267/157441818-5f7797ba-0407-448b-a0b3-2bdc33a54d50.png)
Null space3: Relation to linear independence
![image](https://user-images.githubusercontent.com/78291267/158619143-fdc17720-ba7c-4063-8e14-175e0525b3de.png)
Column space of a matrix
![image](https://user-images.githubusercontent.com/78291267/158619733-9eb0de39-da61-4d2e-b537-e9a4c2911cdc.png)
Column space is all the linear combinations of column vectors. It is same with span!
![image](https://user-images.githubusercontent.com/78291267/158619901-64abdcb7-8abb-46ca-a5fb-e80c513eea0d.png)
)
![image](https://user-images.githubusercontent.com/78291267/158772491-4aaa6ccc-ed94-4550-aaf6-1c3bf0451de0.png)
Dimension of the null space or nullity
![](https://user-images.githubusercontent.com/78291267/158773333-9e7cd877-699e-4195-aff5-e9f1250fba0c.png)
Null space in here is equal to a linear combination of these vectors.
![](https://user-images.githubusercontent.com/78291267/158774108-bc4f025e-c04a-4b42-9ac8-46859d89c776.png)
$\vec {v_1}, \vec {v_2}, \vec {v_3}$ are basis for the null space B!!
- Dimension of subspace = # of elements in a basis for the subspace
- Nullity:, dim(N(B)) = 3 in this example!
The nullity of any matrix is equal to the number of free columns.
Dimension of the column space or rank
![image](https://user-images.githubusercontent.com/78291267/158776869-8a8d7adc-e221-41ab-b087-fc83f6da8ada.png)
Column 1, 2, 4 are pivot columns. They are clearly linearly independent.
![image](https://user-images.githubusercontent.com/78291267/158777501-60500076-666d-499f-b0f2-c994ebaff1f1.png)
Showing relation between basis cols and pivot cols
![image](https://user-images.githubusercontent.com/78291267/159190569-d8e78bc4-5f88-4064-a01e-4dece7888d6f.png)
Showing that the candidate basis does span C(A)
'Computer Science > Linear Algebra' 카테고리의 다른 글
09 Linear transformation examples (0) | 2022.03.29 |
---|---|
08 Functions and linear transformations (0) | 2022.03.21 |
06 Matrices for solving systems (0) | 2022.02.24 |
05. Vector dot and cross products (0) | 2022.02.22 |
04. Subspaces and the basis for a subspace (0) | 2022.02.22 |